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Abstract We introduce a family of real random polynomials of degree n whose coefficients
ak are symmetric independent Gaussian variables with variance 〈a2

k 〉 = e−kα
, indexed by a

real α ≥ 0. We compute exactly the mean number of real roots 〈Nn〉 for large n. As α is
varied, one finds three different phases. First, for 0 ≤ α < 1, one finds that 〈Nn〉 ∼ ( 2

π
) logn.

For 1 < α < 2, there is an intermediate phase where 〈Nn〉 grows algebraically with a con-

tinuously varying exponent, 〈Nn〉 ∼ 2
π

√
α−1
α

nα/2. And finally for α > 2, one finds a third
phase where 〈Nn〉 ∼ n. This family of real random polynomials thus exhibits a condensation
of their roots on the real line in the sense that, for large n, a finite fraction of their roots
〈Nn〉/n are real. This condensation occurs via a localization of the real roots around the
values ± exp[ α

2 (k + 1
2 )α−1], 1 � k ≤ n.

Keywords Random polynomials · Condensation phenomenon

1 Introduction

Since the early work of Bloch and Pólya [1] in the 30’s, the study of random algebraic
equations has now a long story [2, 3]. In the last few years, it attracted a renewed interest
in the context of probability and number theory [4], as well as in the field of quantum
chaos [5]. Recently, we showed that there are also interesting connections between random
polynomials and persistence properties of physical systems [6, 7].

Here we consider real random polynomials, i.e. polynomials with real random coeffi-
cients, of degree n. While these polynomials have exactly n roots in the complex plane, the
number of roots on the real line Nn is a random variable. One would like to characterize
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the statistics of this random variable and a natural question is thus: what is the mean num-
ber 〈Nn〉 of real roots and how does it behave with n for large n [4]? This question has
been widely studied in the past for Kac’s polynomials Kn(x) = ∑n

k=0 ak xk where ak are in-
dependent and identically distributed (i.i.d.) random variables of finite variance 〈a2

k 〉 = σ 2.
In that case it is well known that 〈Nn〉 ∼ 2

π
logn, independently of σ . This result was first

obtained by Kac [8] for Gaussian random variables and it was later shown to hold also
for a wider class of distributions of the coefficients ak [2, 3]. Interesting generalizations of
Kac’s polynomials have been studied in the literature where ak are independent Gaussian
variables but non identical, such that 〈a2

k 〉 = kd−2, where d > 0 is a real number, leading
to 〈Nn〉 ∼ π−1(1 + √

d/2) logn [7, 9]. Given the robustness of this asymptotic logarithmic
behavior of 〈Nn〉, it is natural to search for random polynomials for which 〈Nn〉 increases
faster than logn, for instance algebraically.

One such instance is provided by the real Weyl polynomials Wn(x) defined by

Wn(x) =
n∑

k=0

εk

xk

√
k! , (1)

where εk are i.i.d. random variables of zero mean and unit variance. Thus here, ak = εk/
√

k!
and the variance is 〈a2

k 〉 = 1/k!, which for large k behaves as 〈a2
k 〉 ∝ e−k logk . For these real

polynomials in (1), it is known that 〈Nn〉 ∝ n1/2. For instance, in the special case where
εk are Gaussian random variables of unit variance, one has 〈Nn〉 ∼ 2

π

√
n [7, 10]. Another

interesting and intriguing instance of real random polynomials was introduced a long time
ago by Littlewood and Offord [11] who studied the random polynomials Ln(x) given by

Ln(x) = 1

2
+

n∑
k=1

εk

xk

(k!)k
, (2)

where εk = ±1 with equal probability. Thus in this case ak = εk/(k!)k and the variance is
〈a2

k 〉 = 1/(k!)2k , which behaves for large k as 〈a2
k 〉 ∝ e−2k2 logk . Using algebraic methods,

they showed that such polynomials Ln(x) have all their roots real and therefore 〈Nn〉 = n.
We thus have here two examples of real random polynomials in (1) and (2) where, at

variance with Kac’s polynomials, 〈Nn〉 grows algebraically with n. In the second exam-
ple (2), the number of real roots is “macroscopic” in the sense that, for large n, there is a
finite fraction 〈Nn〉/n of the roots which are on the real axis. For Ln(x) in (2) this fraction is
exactly one. We thus say that there is a condensation of the roots on the real line, similar to a
Bose-Einstein condensation where a finite fraction of the particles of a quantum-mechanical
system (Bosons) condense into the lowest energy level. In the case of random polynomi-
als, the roots play the role of the particles and the equivalent of the ground state is the real
line.

The purpose of this paper is to understand what types of polynomials lead to this conden-
sation phenomenon. Of course, it is very difficult to address this question for any random
coefficients ak . However, guided by the two examples above in (1) and (2), and in particular
by the large k behavior of 〈a2

k 〉, we introduce a family of random polynomials Pn(x) indexed
by a real α ≥ 0 defined by

Pn(x) =
n∑

k=0

akx
k, 〈a2

k 〉 = e−kα

, (3)
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Fig. 1 Asymptotic behavior of the mean number of real roots 〈Nn〉 of Pn(x) in (3) as a function of α. These
polynomials exhibit a condensation of their roots on the real axis for α ≥ 2

where ak are real independent Gaussian random variables of zero mean. While α = 0 corre-
sponds to Kac’s polynomials, we recall that, for Wn(x) in (1), 〈a2

k 〉 ∝ e−k logk and for Ln(x)

in (2), 〈a2
k 〉 ∝ e−2k2 logk . Therefore, due to the extra logarithmic factor, these random polyno-

mials are not exactly of the form introduced above (3). However, for α → 1+, one expects
to recover the behavior of Wn(x) in (1) while for α → 2+, one expects Pn(x) to behave
similarly to Ln(x) in (2): this is depicted schematically in Fig. 1.

Our main results can be summarized as follows. As α ≥ 0 is varied one finds three
different phases. The first phase corresponds to 0 ≤ α < 1, where one finds that 〈Nn〉 ∼
(2/π) logn. In the second one, corresponding to 1 < α < 2, one has 〈Nn〉 ∼ 2

π

√
α−1
α

nα/2.
And in the third phase, for α > 2, one finds 〈Nn〉 ∼ n. The condensation of the roots
on the real axis thus happens for α ≥ 2 and as one increases α, the condensation transi-
tion sets in at the critical value αc = 2. Furthermore, one finds that these real roots con-
dense into a quasi-periodic structure such that there is, on average, one root in the interval
[−xm+1,−xm] ∪ [xm, xm+1], with xm = e

α
2 mα−1

, with 1 � m < n. These different behav-
iors are summarized in Fig. 1. By analogy with phase transitions of statistical systems the
case 0 < α < 1 can be considered as a high-temperature phase whereas α > 2 corresponds
to the low-temperature (ordered) phase. Roughly speaking, one can consider our results as
an interesting example where the transition from the high temperature where 〈Nn〉 ∝ logn

(governed by a “α = 0 fixed point”) to the low temperature phase where 〈Nn〉 ∝ n (gov-
erned by “α = ∞” fixed point) happens through a marginal phase, for 1 < α < 2, where
〈Nn〉 ∼ nϕ with an exponent ϕ = α/2 which depends continuously on α.

The paper is organized as follows. In Sect. 2, we describe the general framework to
compute the local density of real roots, which directly leads to 〈Nn〉. In Sects. 3 to 6 we
then analyse separately the cases 0 ≤ α < 1, α < 2, α > 2 and the “critical case” α = 2.
In Sect. 7, we give a qualitative argument to explain the condensation transition occurring
at αc = 2 before we conclude in Sect. 8. The Appendix contains some useful technical
details.

2 General Framework

First we notice that given that Pn(x), as a function of x, is a Gaussian process, it is com-
pletely characterized by its two-point correlation function Cn(x, y)

Cn(x, y) = 〈Pn(x)Pn(y)〉 =
n∑

k=0

e−kα

xk yk, (4)

where we used the notation 〈. . .〉 to denote an average over the random variables ak .
A central object involved in the calculation of 〈Nn〉 is ρn(x), the mean density of real
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roots at point x. If we denote λ1, λ2, . . . , λp the p real roots (if any) of Pn(x), one has
δ(Pn(x)) = ∑p

i=1 δ(x − λi)/|P ′
n(λi)| such that ρn(x) can be written as

ρn(x) =
p∑

i=1

〈δ(x − λi)〉 = 〈|P ′
n(x)|δ(Pn(x))〉

=
∫ ∞

−∞
dy|y|〈δ(P ′

n(x) − y)δ(Pn(x))〉. (5)

Under this form (5), one observes that the computation of the mean density involves the joint
distribution of the polynomial Pn(x) and its derivative P ′

n(x) which is simply a bivariate
Gaussian distribution. After Gaussian integration over y, one obtains

ρn(x) =
√

cn(x)(c′
n(x)/x + c′′

n(x)) − [c′
n(x)]2

2πcn(x)
,

(6)

cn(x) = Cn(x, x) =
n∑

k=0

e−kα

x2k.

This formula (6) can be written in a very compact way [4]:

ρn(x) = 1

π

√
∂u∂v logCn(u, v)

∣∣
u=v=x

. (7)

Given that the random coefficients ak are drawn from a symmetric distribution, we can
restrict our study of ρn(x) on R

+ from which one obtains the mean number of real roots
〈Nn〉 as

〈Nn〉 = 2
∫ ∞

0
ρn(x)dx. (8)

An Important Change of Variable We will see below that it is useful to consider these
polynomials Pn(x) in terms of another variable Y defined as

Y =
(

2

α
logx

) 1
α−1

. (9)

We denote ρ̂n(Y ) the mean density of the real roots in terms of this new variable such that
one has also 〈Nn〉 = ∫ ∞

0 ρ̂n(Y )dY . For 0 < α < 1 we will see that, for large n, most of the
real roots of Pn are located close to Y = n while for α > 1, the density extends over the
whole interval Y ∈ [1, n]. This change of variable (9) is motivated by the following analysis.

First we notice that Cn(x, y) = ∑n

k=0 e−kα
xkyk in (4) is of the form Cn(x, y) = cn(

√
xy).

Anticipating a saddle point analysis, one writes cn(x) as

cn(x) =
n∑

k=0

e−kα

x2k =
n∑

k=0

exp(−φ(k, x)),

φ(k, x) = kα − 2k logx. (10)

Although φ(k, x) is defined for integers k = 0,1,2, . . . , n, it is readily extended to the real
axis and denoted φ(u, x) = uα − 2u logx for u ∈ R

+. The behavior of cn(x) is essentially
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governed by the behavior of φ(u, x) as a function of u (and fixed x). In particular, for α < 1,
φ(u, x) has a single maximum while for α > 1, it has a single minimum for u = u∗(x) given
by

∂uφ(u∗(x), x) = 0, ∂2
uφ(u∗(x), x) = α(α − 1)u∗(x)α−2 > 0, (11)

u∗(x) =
(

2

α
logx

) 1
α−1

. (12)

The new variable Y introduced above in (9) is thus precisely Y = u∗(x). As a consequence,
the density behaves quite differently in both cases α < 1 and α > 1.

For α < 1, most of the real roots on R
+ are located in [1,∞]. For fixed x > 1, φ(u, x)

as a function of u in the interval [0, n] has a global minimum for u = n. Therefore, the sum
entering in the expression of cn(x) in (10) will be dominated by the terms with k ∼ n. The
expansion of φ(k, x) in Taylor series around k = n yields

φ(k, x) = φ(n, x) + (k − n)(αnα−1 − 2 logx) + · · ·
= (1 − α)nα − k(αnα−1 − 2 logx) + · · · , (13)

where the higher order terms can be neglected in the large n limit because ∂jφ(n, x)/∂uj =
O(nα−j ) for j ≥ 2. Thus, for α < 1 one has

cn(x) ∼ e−(1−α)nα
n∑

k=0

(xe− α
2 nα−1

)2k, (14)

which, in terms of the rescaled variable x̃ = x e− α
2 nα−1

, is the correlator of Kac’s polynomi-
als. From this observation (14), one can straightforwardly obtain the mean number of real
roots 〈Nn〉, this will be done in Sect. 3.

For α > 1, the situation is quite different and in that case, φ(u, x) has a single minimum

for u = u∗(x) = ( 2
α

logx)
1

α−1 (11). Besides, we will see below that the main contribution
to 〈Nn〉 on R

+ comes from the interval 1 < x < exp ( α
2 nα−1) where 1 < u∗(x) < n. In that

case the sum entering in the definition of cn(x) in (10) is indeed dominated by k ∼ u∗(x)

and cn(x) can be evaluated by a saddle point calculation. For this purpose, one obtains after
some algebra explained in the Appendix, a convenient expression of ρn(x) as

ρn(x) = 1

πx

(∑n

k=0(k − u∗(x))2e−φ(k,x)

∑n

k=0 e−φ(k,x)
−

[∑n

k=0(k − u∗(x))e−φ(k,x)

∑n

k=0 e−φ(k,x)

]2) 1
2

, (15)

which is the starting point of our analysis for α > 1. For 1 < x < exp( α
2 nα−1), one has

u∗(x) < n so that the sums over k in (15) are dominated by k ∼ u∗(x). The Taylor expansion
of φ(k, x) around this minimum reads

φ(k, x) = φ(u∗(x), x) +
∞∑

j=2

α(α − 1) · · · (α − j + 1)

j ! (k − u∗(x))j [u∗(x)]α−j . (16)

For large x, u∗(x) ∝ (logx)1/(α−1) is also large so that, to leading order in x, one can re-
tain only the term corresponding to j = 2 in the Taylor expansion in (16). This yields, for
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large x

n∑
k=0

g(k − u∗(x)) exp (−φ(k, x))

∼ e−φ(u∗(x),x)

n∑
k=0

g(k − u∗(x)) exp

[
−α(α − 1)

2
(k − u∗(x))[u∗(x)]α−2

]
, (17)

with g(z) = z or g(z) = z2 as in (15). For later purpose it is useful to write u∗(x) =
�u∗(x)� + b with 0 < b < 1, where �u∗(x)� is the largest integer smaller than u∗(x) (i.e. the
floor function). Performing the change of variable m = k −�u∗(x)� in the discrete sum (17),
such that k − u∗(x) = m − b one obtains the useful expression

n∑
k=0

g(k − u∗(x)) exp (−φ(k, x))

∼ e−φ(u∗(x),x)

n−�u∗(x)�∑
m=−�u∗(x)�

g(m − b) exp

[
−α(α − 1)

2
(m − b)2[u∗(x)]α−2

]
. (18)

One clearly sees in expression (18) that the behavior of this discrete sum, due to the term
[u∗(x)]α−2 ∝ (logx)(α−2)/(α−1), will depend on the sign of α − 2. We will thus treat the
three cases 1 < α < 2, α > 2 and α = 2 separately. This will be done in Sects. 4, 5 and 6
respectively.

3 The Case 0 < α < 1

In that case, from the expression for cn(x) in (14), we can use the results of Kac’s poly-
nomials to obtain that most of the real roots will be such that, for large n, xe− α

2 nα−1 − 1 =
O(n−1) [12]. In other words, the real roots are distributed in a region of width 1/n around
e

α
2 nα−1 = 1 + α

2 nα−1 + O(nα−2) and this distribution is exactly the same as the one for Kac’s
polynomials (corresponding to α = 0). The number of real roots is thus also the same and
given by

〈Nn〉 ∼ 2

π
logn, (19)

independently of α < 1.

4 The Case 1 < α < 2

In that case [u∗(x)]α−2 → 0 for large u∗(x) and one thus sees on the asymptotic expression
in (18) that the discrete sum can be replaced by an integral. This yields, for large n and large
x with x < exp ( α

2 nα−1)

n∑
k=0

g
(
k − u∗(x)

)
exp (−φ(k, x)) ∼ e−φ(u∗(x),x)

∫ ∞

−∞
g(y)e− α(α−1)

2 y2u∗(x)α−2
dy. (20)

Note that the prefactor e−φ(u∗(x),x) is unimportant for the computation of ρn(x) because it
disappears between the numerator and the denominator in (15) and it will be omitted below.
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In particular, setting g(z) = 1 in (20) one has

n∑
k=0

exp (−φ(k, x)) ∝ √
2π

[
u∗(x)2−α

α(α − 1)

] 1
2

, (21)

and similarly, setting g(z) = z2 in (20) one has

n∑
k=0

(k − u∗(x))2 exp (−φ(k, x)) ∝ √
2π

[
u∗(x)2−α

α(α − 1)

] 3
2

, (22)

while
∑n

k=0(k − u∗(x)) exp (−φ(k, x)) ∼ 0 to lowest order in n. Therefore using the ex-
act expression given in (15) together with the asymptotic behaviors given in (21, 22), one
obtains the large x behavior of ρn(x) as

ρn(x) ∼ 1

πx

1√
α(α − 1)

(
2

α
logx

) 2−α
2(α−1)

. (23)

For a clear comparison with the case α > 2, it is convenient to write the density ρ̂n(Y ), in
terms of the variable Y , which reads, for 1 � Y < n

ρ̂n(Y ) ∼
√

α(α − 1)

2π
Y − 1

2 (2−α), (24)

and in Fig. 2(a), we show a sketch of this asymptotic behavior (24) of ρ̂n(Y ) for 1 � Y < n.

Fig. 2 (a) Sketch of ρ̂n(Y ) (in arbitrary units) given in (24) as a function of Y for 1 � Y < n for α < 2.
(b) Sketch of ρ̂n(Y ) (in arbitrary units) given in (33) as a function of Y for 1 � Y < n for α = 2. (c) Sketch
of ρ̂n(Y ) (in arbitrary units) given in (29) as a function of Y for 1 � Y < n for α > 2. Here k denotes an
integer with 1 � k < n
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We can now compute 〈Nn〉 = ∫ ∞
−∞ ρn(x) dx. First, one notices that for α > 1, the series

entering in the definition of cn(x) in (10) has an infinite radius of convergence so that one
readily obtains that

∫ +1
−1 ρn(x) dx is of order O(1) in the limit n → ∞. Besides, for large

x � e
α
2 nα−1

, one has (see also [7])

ρn(x) ∼
√

〈a2
n−1〉

〈a2
n〉

1

πx2
∼ e

α
2 nα−1

πx2
, (25)

which implies that
∫ ∞

e
α
2 nα−1 ρn(x) dx is also of order O(1) in the limit n → ∞. From these

properties, it follows that the main contributions to 〈Nn〉 on R
+ comes from the interval

[1, e
α
2 nα−1 ] where the asymptotic behavior of ρn(x) is given in (23). Therefore one has

〈Nn〉 ∼ 2
∫ e

α
2 nα−1

1
ρn(x) dx ∼ 2

π

√
α − 1

α
nα/2, (26)

where the factor 2 comes from the additional contribution coming from [−e
α
2 nα−1

,−1].
We thus have here an algebraic growth 〈Nn〉 ∝ nα/2 with a continuously varying exponent
α/2. This exponent tends to 1/2 as α → 1+, which is expected from the analysis of Weyl
polynomials Wn(x) in (1) for which 〈a2

k 〉 ∝ e−k logk (although the variance is not exactly
of the form 〈a2

k 〉 = e−kα
). Besides, from (26), one also obtains that the amplitude of this

term proportional to nα/2 vanishes when α → 1. We recall that for α ≤ 1, one has instead
〈Nn〉 ∝ ( 2

π
) logn (19), characteristic for Kac’s polynomials. This suggests that this limit

α → 1 is rather singular in the sense that the asymptotic behavior of 〈Nn〉 for large n changes
“discontinuously” from logn to

√
n.

5 The Case α > 2

In that case, the behavior of the discrete sum in (18), which enters in the computation of
ρn(x) (15) is quite different. Indeed, in that case [u∗(x)]α−2 ∝ (logx)(α−2)/(α−1) → ∞ for
large x and therefore the leading term for large x in (18) corresponds to m = 0 if b < 1/2
or m = 1 in b > 1/2. Keeping these leading contributions, one has

n∑
k=0

g
(
k − u∗(x)

)
exp (−φ(k, x))

∝ g(−b) exp

[
−α(α − 1)

2
b2u∗(x)α−2

]

+ g(1 − b) exp

[
−α(α − 1)

2
(1 − b)2u∗(x)α−2

]
, (27)

where, again, we have omitted the unimportant prefactor e−φ(u∗(x),x). Using this large x

expansion (27), one obtains ρn(x) in (15) as

ρn(x) ∼ 2

(πx) cosh[ α(α−1)

2 Y α−2(1 − 2b)] , Y =
(

2

α
logx

) 1
α−1

. (28)
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In terms of the variable Y , the density ρ̂n(Y ) reads,

ρ̂n(Y = �Y � + b) ∼ α(α − 1)Y α−2

2π cosh[ α(α−1)

2 Y α−2(1 − 2b)] . (29)

In Fig. 2(c), one shows a sketch of ρ̂n(Y ) for large Y < n given by (29): it is qualita-
tively very different from the case α < 2 (see Fig. 2(a)). Indeed, ρ̂n(Y ) exhibits peaks cen-
tered around k + 1

2 for large integers 1 � k < n. The height of these peaks is given by
α(α − 1)kα−2/(2π) whereas its width scales like k2−α .

From ρn(x), one can now compute the mean number of real roots. As in the case α < 2
(see (25) and above), one can show that the main contribution to 〈Nn〉 comes from the
intervals [−e

α
2 nα−1

,−1] and [1, e
α
2 nα−1 ]. One thus has from (29)

〈Nn〉 = 2
∫ ∞

0
ρn(x) dx ∼ 2

∫ n

0
ρ̂n(Y ) dY

∼
n∑

k�1

∫ 1

0

α(α − 1)kα−2

π cosh [ α(α−1)

2 kα−2(1 − 2b)] db ∼
n∑

k�1

∫ α(α−1)
2 kα−2

− α(α−1)
2 kα−2

dz

π cosh z
, (30)

and finally

〈Nn〉 ∼ n, (31)

where we have used
∫ ∞

−∞ dz/ cosh z = π . This condensation of the roots on the real axis,
characterized by the fact that 〈Nn〉 ∼ n thus occurs via the formation of this quasi-periodic
structure (see Fig. 2(c)). More precisely, this computation in (30) shows that for large k,
2
∫ k+1

k
ρ̂n(Y ) dY ∼ 1 which means, going back to the original variable x, that there is, on

average, one root in the interval [−xk+1,−xk] ∪ [xk, xk+1], with xk = e
α
2 kα−1

.

6 The Special Case α = 2

In view of the previous analysis, it is tempting to consider the fraction of real roots
Φ = limn→∞〈Nn〉/n as an “order parameter”. For α < 2, one has Φ = 0 whereas Φ = 1
for α > 2. One can however interpolate smoothly between these two limiting cases by con-
sidering the case α = 2 and introducing an additional real parameter μ such that

〈a2
k 〉 = e−μk2

. (32)

Performing the same algebra as explained in the Appendix, one obtains the same formula
as given in (15) with u∗(x) = μ−1 logx. The new variable is thus here Y = μ−1 logx and,
setting Y = �Y � + b it is easy to see that the density ρ̂n(Y ) is given by for 1 � Y < n

ρ̂n(Y ) = μ

π

[∑∞
m=−∞(m − b)2e−μ(m−b)2

∑∞
m=−∞ e−μ(m−b)2 −

[∑∞
m=−∞(m − b)e−μ(m−b)2

∑∞
m=−∞ e−μ(m−b)2

]2]1/2

, (33)

which is thus 1-periodic for all μ. In Fig. 2(c), one shows a sketch of ρ̂(Y ) for α = 2
given by (33). For μ → 0, the density is almost constant and ρ̂n(Y ) ∼ π−1√μ/2 and the
modulation of the density is increasing with μ. For large μ, the sum in (33) is dominated by
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the terms corresponding to m = 0 and m = 1 and ρ̂n(Y ) is thus given by a formula similar
to (29) setting α = 2 and replacing Y α−2 by μ. For the average number of real roots one has

〈Nn〉 ∝
{ √

2μ

π
n, μ � 1,

n, μ � 1,

which shows that this family of real random polynomials (32) interpolate smoothly between
the cases α < 2 (26) and α > 2 (30).

7 A Qualitative Argument for the Transition at α = 2

This condensation of the roots on the real axis can be qualitatively understood if one consid-
ers the random polynomials (for x > 0) P̂n(Y ) = Pn(x) of the variable Y , which one writes
as

P̂n(Y ) =
n∑

k=0

âkw(k,Y ),w(k,Y ) = exp

[
−1

2
(kα − αkY α−1)

]
, (34)

and âk are i.i.d. Gaussian variables of unit variance. It is easy to see that the weights w(k,Y ),
as a function of k, have a single maximum for k = Y where the second derivative is pro-
portional to kα−2. Thus for α > 2, the weights get more and more peaked around this
maximum for large k, whereas âk is typically of order O(1). Therefore, given a large in-
teger m, P̂n(m) is, for α > 2, dominated by a single term corresponding to k = m. Con-
sequently, the sign of P̂n(m) is essentially the sign of âm. This in turn implies that, if
âm and âm+1 have an opposite sign, Pn(x) has, with a probability close to 1, a root in
the interval [e α

2 mα−1
, e

α
2 (m+1)α−1 ]. In the case where âm and âm+1 have the same sign, the

same argument shows that Pn(x) has, with a probability close to 1, a root in the interval
[−e

α
2 (m+1)α−1

,−e
α
2 (m)α−1 ]. One thus recovers qualitatively the result we had found from the

computation of ρ̂n(Y ) in (30) where we have shown that Pn(x) has, on average, one root in
the interval [−e

α
2 (m+1)α−1

,−e
α
2 (m)α−1 ] ∪ [e α

2 mα−1
, e

α
2 (m+1)α−1 ]. This shows finally that Pn(x)

has, on average, 〈Nn〉 ∝ n real roots.
We also point out that our argument explains in a rather intuitive way the result obtained

by Littlewood and Offord [11] for the random polynomials Ln(x) (2). For these specific
polynomials, defining x0 = 0, xm = mmm!, they rigorously proved, using algebraic (and
rather cumbersome) methods, that Ln(x) has a root either on [xm, xm+1] if εmεm+1 = −1 or
in [−xm+1,−xm] if εmεm+1 = 1. Our argument gives some insight on their intriguing result
and allows to understand it in a rather simple way.

8 Conclusion

To conclude we have introduced a new family of random polynomials (3), indexed by a
real α. For these random polynomials, we have computed the mean density of real roots
ρn(x) from which we computed the mean number of real roots 〈Nn〉 for large n. We have
shown that, while for 0 ≤ α < 1, 〈Nn〉 ∼ ( 2

π
) logn, the behavior of 〈Nn〉 for α > 1 deviates

significantly from the logarithmic behavior characteristic for Kac’s polynomials. For 1 <

α < 2, we have shown that 〈Nn〉 ∝ nα/2 whereas for α > 2, 〈Nn〉 ∼ n. This family of real
random polynomials thus displays an interesting condensation phenomenon of their roots on
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the real axis, which is accompanied by an ordering of the roots in a quasi periodic structure:
this is depicted in Fig. 2.

Of course, the occurrence of this transition raises several interesting questions like the
behavior of the variance of the number of real roots for large n as α is varied. It would
be also interesting to compute the two-point correlation function of the real roots, which
is a rather natural tool to characterize this periodic structure we have found. In view of
this, we hope that this interesting phenomenon will stimulate further research on random
polynomials.

Appendix: A Useful Expression for the Mean Density ρn(x)

In this appendix, we derive the expression for the mean density ρn(x) as given in (15) start-
ing from (7). We first write cn(x) = 〈Pn(x)Pn(x)〉 as

cn(x) = e−φ(u∗(x),x)

n∑
k=0

e−φ̃(k,x), (35)

where u∗(x) is the location of the minimum of φ(u, x) given in (11)

u∗(x) =
(

2

α
logx

) 1
α−1

, (36)

and

φ(u∗(x), x) = (1 − α)u∗(x)α, (37)

φ̃(k, x) = φ(k, x) − φ(u∗(x), x) = kα − αk[u∗(x)]α−1 + (α − 1)[u∗(x)]α.
The correlator Cn(x, y) = cn(

√
xy ) is given by (35) together with (37) where x is replaced

by
√

xy. All the dependence of Cn(x, y) in x, y is thus contained in u∗(√xy ) only. From
its definition in (36) one has immediately

∂xu
∗(

√
xy ) = 1

α(α − 1)

1

x
[u∗(

√
xy )]2−α, (38)

from which we obtain a set of useful relations

∂2
x,yφ(u∗(

√
xy ),

√
xy ) = − 1

α(α − 1)

1

xy
[u∗(

√
xy )]2−α,

∂xφ̃(k,
√

xy ) = 1

x
(u∗(

√
xy ) − k), (39)

∂2
x,y φ̃(k,

√
xy ) = 1

α(α − 1)

1

xy
[u∗(

√
xy )]α−2.

For the computation of ρn(x) from (7), it is useful to introduce the notation, for any function
g(k)

〈g(k)〉Z =
∑n

k=0 g(k) exp (−φ̃(k,
√

xy ))∑n

k=0 exp (−φ̃(k,
√

xy ))
. (40)
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From Cn(x, y) = cn(
√

xy ) and cn(x) given in (35) one obtains

∂x∂y logCn(
√

xy ) = −∂2
x,yφ(u∗(

√
xy ),

√
xy ) − 〈∂xφ̃(k,

√
xy )∂yφ̃(k,

√
xy )〉Z

− 〈∂xφ̃(k,
√

xy )〉Z〈∂xφ̃(k,
√

xy )〉Z − 〈∂2
x,y φ̃(k,

√
xy )〉Z. (41)

From the above relations in (39), it is readily seen that the first and the last term in (41)
cancel each other. Using the relation in (7), one finally obtains the relation given in the text
in (15).
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